JOURNAL OF COMPUTATIONAL PHYSICS 106, 101-107 (1993)

Efficient Parallel Implementation of Molecular Dynamics
on a Toroidal Network. Part |. Parallelizing Strategy

K. EsSseLINK, B. SMiT, AND P. A, J. HILBERS

Koninklijke/Sheli-Laborarorium, Amsterdam, Shell Research B.V., Badhuisweg 3, 1031 CM Amsterdam, The Netherlands

Received December 5, 1990; revised July 6, 1992

Molecular dynamics simulations require supercomputers. A specific
class of supercomputers is that of paralle! computers. We derive an
implementation of molecular dynamics on a toroidal network of pro-
cessors. First, we argue that for a fast algorithm the simulation universe
has to be divided into regular cells, and we determine the best shape of
these cells. For a parallel implementation, we choose to distribute cells
rather than particles and we show how to assign the cells to processors,
given certain restrictions on universe and network. The assignment is
proven to be optimal with respect to communication cost. We go on to
explain our implementation. Finally, we compare the timing results with
those for computaticns performed on a Cray single-processor machine,
The physical results obtained with the implementation are discussed
elsewhere. © 1993 Academic Press. Inc,

1. INTRODUCTION

Computer simulations have come to play an important
role in statistical mechanics (see [2] for a historic
overview). Since exact, quasi-experimental data can be
generated on well-defined model systems, simulations can
sometimes replace experiments as a means to test theories,
and may enable new phenomena to be observed as well.

The capacity of the available computers places restric-
tions on the total number of particles and on the total
simulation time. Therefore, much effort has been spent in
designing algorithms to reduce the computer capacity
required for a simulation {!]. This, however, concerns
almost exclusively sequential and vector machines, and
many optimal codes for molecular simulations on these
machines are available today.

For parallel compulers the developments are still in their
infancy. Only a few articles have been published on the
systematic design of parallel algorithms for molecular
dynamics simulations [3, 5, 9-11]. The main idea of
parallel computing is to distribute the work among the
several {small} processors instead of using one (large} com-
puter. In general, these small processors will be much
cheaper than a large vector computer and easier to maintain
also. This ailows the study of large size problems at a
fraction of the cost of a supercomputer, as ts illustrated in

101

[137]. Good performance can only be obtained if the load is
distributed over the processors evenly and the amount of
communication between processors is small.

The details of a parallel algorithm in general depend on
the topology of the processor network. Therefore, it is
important to be able to estimate a priori which mappings of
an algorithm on a processor network will yield optimal per-
formance. In this work we demonstrate how to approach
this problem for moelecular dynamics simulations of
homogeneous systems. We will argue that it is more efficient
to distribute cells than particles. We derive rules (Section 4)
which, depending on the system to be simulated and the
processor network, give the optimal division of the universe
into cells, the optimal shape of these cells, and the optimal
assignment of cells to the processors. As a result, it is no
longer necessary to use only “heuristic” arguments in choos-
ing a mapping. One of the conclusions is that for processor
networks of size 32 * 32 the common z-mapping is no longer
optimal with respect to communication cost.

We illustrate this approach by a simulation of a Lennard-
Jones fluid on a toroidal processor network. For this
particular network we explain our implementation in
somewhat more detail. Furthermore, we compare the
timing results of several simulations on a Transputer
network with those performed on a Cray single-processor
machine.

This article is the first of a series of (wo articles describing
our implementation. The second article ([4], hereinafter I1)
pays specific attention to potentials commonly used, and
the problem one encounters with multi-particle potentials if
these particles are in different cells and processors.

2. MOLECULAR DYNAMICS ALGORITHM

In this section we review the algorithm we have used for
molecular dynamics simulations. We have restricted our-
selves to cubic simulation boxes with periodic boundary
conditions and to homogeneous systems with short-range
interactions; .., the potential can be truncated at a distance

0021-9991/93 85.00

Copyright € 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.

102

which is significantly smaller than half the box length of the
system being simulated. (For a more detailed description of
potentials, please see IL) The algorithm is in essence a
combination of the well-known neighborlist or Verlet-list
method [14] and the linked-list method [67]. This combina-
tion was introduced by Auerbach et al. [2].

When we truncate the potential at a fixed cutoff radius
R, a particle interacts only with those particles which are in
a sphere with radius R, around this particle. In order to
prevent checking each time step whether a particle is in
the sphere surrounding another particle, which is an order
N? operation (where N is the total number of particles), a
neighbor list is constructed. In this method the cutoff sphere
of the potential is surrounded by a sphere with a larger
radius R, . For each particle a list is made of all the other
particles in this larger sphere. After that this list is used for
the evaluation of the ferce: only the particles that are in the
neighbor list are considered (order). In order to account
for particles entering the sphere which were initially not in

the neighbor list, this list needs to be updated from time to

time {order N?). So although this algorithm reduces the
calculation time significantly, the computational work still
has a component of order N2,

An alternative approach for the evaluation of the force is
the “linked-list” method, in which the simulation box is
divided into a number of cells. If the size and the shape of
the cells are chosen such that

« particles only interact with particles in the same cell or
neighboring cells,

« the assignment of particles to cells can be determined
casily,

= there is a maximum number of particles in a cell,
independent of N,

then instead of looping over all particles it suffices to loop
over nearby cells, resulting in an algorithm of order N.
(Note that a maximum number of particles in a celi,
independent of the total number of particles N, can be
guaranteed for homogeneous systems and taking cells of
fixed size. The number of cells may depend on N.)

Due to the above criteria a cell has to be a semi-regular
space-filling polyhedron with a judiciously chosen edge
length. Let the search space of a cell be those cells in which
particles reside that have to be tnvestigated for interaction.
Before analyzing the volume of the search space for several
polyhedra we note that

o without loss of generality we may assume that the
cutoff length equals one,

» due to Newton’s third law it suffices to consider only
half the volume of the search space, and

 the search space for one particle equals half the
volume of a sphere with radius one, hence 3n = 2.1.

ESSELINK, SMIT, AND HILBERS

TABLEI

Comparison of the Polyhedra

Edge Volume Number of Yolume of
Polyhedron length of cell neighbors search space
Cube 1 i 26 135
Rhoembic 18./3 12 203
dodecahedron
Octahedron 1 1/2 2 165
Truncated 1 8 /2 t4 84.9
octahedron

Table I shows for each of the polyhedra its name, the
necessary edge length (under the constraint that the
neighboring cells be adjacent), the volume of a cell,
the number of neighboring cells, and half the volume of the
search space.

From Tabie I we conclude that although the cube is “less
spherical” than the other polyhedra, it turns out to be the
best. It has both a modest volume and a modest number of
neighbors, whereas the other polyhedra cither have a small
volume and a large number of neighbors or a large volume
and a small number of neighbors. Because of this analysis
and the simple geometry of the cube we have opted for cubic
cells. We note that it is also possible to let particles interact
with other particles in the same cell, the neighboring cells,
and the cells at distance two. A similar comparison table can
be made for these options.

It is interesting to compare the linked-list method with
the neighbor-list method, Using cubic cells in the linked-list
method, half the volume of the search space is 13.5R?,
which is approximately six times larger than the volume
which contributes to the force (57 R3). For the neighbor-list
method the search space is $nR;, but this algorithm is of
order N7 due to the construction of the list. This observa-
tion motivated Auerbach er al. [2] to combine these two
algorithms, using the linked-list method to construct a
neighbor list. This removes the order N for the construc-
tion of the neighbor list without increasing the volume,
which needs to be considered in the evaluation of the force
by a factor of 6.

3. PARALLEL COMPUTING

In molecular dynamics simulations the calculation of the
movements of the particles looks the same for all particles.
From a computational point of view, these properties make
molecular dynamics particularly interesting for parallel
computing. Furthermore, a parallel machine has the advan-
tage that it can be expanded if more computing power is
needed. If, for instance, the number of particles and the
number of processors are increased by a constant factor, the
overall execution time should not be affected {Eq. (5}). This

PARALLEL MOLECULAR DYNAMICS, I

offers opportunities for those research fields where large
simulation universes are necessary.

This article deals with the construction of an implementa-
tion on a toroidal network of processors; i.e., all processors
have connections to a north, east, south, and west neighbor,
and the total network is a wrap-around mesh. In II we
discuss the question whether this is indeed an efficient
topology.

The main loop of the molecular dynamics calculation
consists of two phases. In the first phase the forces on ¢ach
particle are determined, and in the second phase the dis-
placements of the particles are determined from the forces,
together, perhaps, with some macroscopic properties of the
system. Especially the latter phase is trivial to parallelize.
The first one is usually more difficult, since the processors
need to cooperate (exchange information) in order to
compute the potentials.

Two techniques are most commonly used for exploiting
parallelism, viz. particle parallelism and geometric
paralielism.

3.1. Particle Parallelism

The first technique for exploiting parallelism assigns
particles to processors [5, 7]. Continually, each processor
calculates forces and the new positions for its own particles.
The initial distribution of particles remains unchanged
during the simulation and can be chosen such that the
workload is evenly distributed. For muiti-particle potentials
this technique is particularly convenient if all particles
invelved in one potential are assigned to the same pro-
cessor. The computation of, say, a torsion potential (II)
usually involves a lot of manipulation with minor differen-
ces for the four particles. Tt is easy to take advantage of this
if the particles belong to the same processer (aithough this
cannot always be guaranteed, for example, for large chains
and small processor networks). Implementation of the
Lennard—Jones potential, however, poses a problem. It is
quite possible that two particles encounter each other
closely while initially they were very distant. Therefore,
despite the short-range nature of the potential, it is
necessary for each processor to communicate with all others
to determine whether any two particles have become close.
It is difficult to analyze the communication behavior of this
technique a priori. It will in general also not be easy to
achieve good scale-up properties if the processor network
size increases. The disadvantage is quite serious, since
usually the bulk of the computation consists of the evalua-
tion of Lennard-Jones {or comparable) potentials. (See,
e.g, [12].)

3.2. Geometric Paralielism

Geometric paralielism does not suffer from this particular
disadvantage. It assigns space, not particles, to processors

103

[10, 111]. During the computation, a processor calculates
the trajectories of all particles it finds in its space. Because
of the movement of the particles, some particles may enter
a processor'’s space, others may leave. For this reason,
processors continually need to redistribute the particles to
make sure that each one has the right subset. The short-
range nature of the Lennard—Jones potential however, can
be turned into a real advantage. Since the interaction does
not extend over distances larger than R_, it is not necessary
to exchange information over long distances, because dis-
tance in the simulation universe is related to distance in the
processor network. The analysis of the previous section
showed that cubes form an efficient subdivision of space. In
the foilowing section we will derive an efficient assignment
of these cubes to the processors.

We should note that another approach to parallel
programming consists of the “processor farm” idea: there is
a master process dividing the total work among a number
of slaves. This technique is only helpful for relatively large
pieces of work. Implementations for MD usually vield bad
scale-up [7]-

4. ASSIGNMENT OF CELLS

One of the initial assumptions is the homogeneous
distribution of particles, which means that the amount of
work that has to be done is roughly the same for each cell.
Many of the molecular dynamics problems deal with these
systems. “Homogeneous”™ means that if one takes a time
average, the number of particles at each processor will be
equal. (However, at each individual time step we allow fluc-
tuations of the order of 10%.)} Therefore we will assign an
equal number of cells to all processors. The problem is to
find out which cells are to be assigned to which processor.
Suppose we have a square torus of @ * @ processors and a
cubic universe of # * n * # cells, in which the size of the cells
is at least the cutoff R.. The most “natural” mapping (which
is also the most used) i1s the orthogonal projection of
the universe onto the torus of processors. However, this
z-mapping is not always the best. By considering a specific
class of mappings we show for which sizes of systems the
z-mapping is indeed efficient and for which sizes it is not.

The choice of the mapping determines the communica-
tions cost, which depends on both

+ the number of cells that have to be communicated
between two processors and

« the distance between two communicating processors.

Moreover, we want this communications cost to be equal
and minimal for all processors. First we investigate the
information needed for one cell.

In Fig. t we see a central cell “C” surrounded by 13 other
cells, the “interaction set.” With the particle information
from the interaction set, the central cell can calculate all the

104

FIG. 1. One cell (“C") with 13 neighbors.

necessary interactions. Interactions between the central cell
and the other 13 neighbors (not drawn in the figure) will be
taken into account by these 13 other cells. (The 13 cells
in the interaction set can be chosen freely from the 26
candidates as long as no two opposite cells are in the set.)
While mapping the cells onto the network, we have to take
into account the communications between the central cell
and its interaction set. It is important to minimize the
distance between these cells in the network.

But there is another aspect; see Fig. 2.

In this figure, 2 = 2 = 2 central cells and their interaction
scts are shown, Note that only 35 cells are needed to form
the interaction sets of the 8 central cells. 35 is constderably
less than 8 + 13 and yet it is sufficient, since the 8 cells can
share information from the surrounding celis. This also
means that it is important to assign contiguous cells (a
cluster), not just randomly chosen cells, to processors. In
the analysis below we have made use of a further permissible
reduction, using only half of the 56 cells surrounding the §
central cells; it should be noted though, that, in conse-
quence, the interaction sets of these 8 cells are no longer of
equal size.

We will derive formulae describing the communication
costs of a class of mappings of clusters. These clusters have
equal x- and y-sizes, and a variable z-size; see, for example,
Fig. 3.

Suppose that the x- and p-sizes of a cluster is m cells. We
determine the z-size as follows. In our @ * Q torus network,
we make sub-squares of size g * ¢. (Suppose g divides 0 and
g > 1.) See Fig. 4.

Within these ¢ * g squares, we make a ring of processors.

//‘ L
S I __}
T
: //
%

|

FIG. 2. Eight central cells with 35 neighbors.

ESSELINK, SMIT, AND HILBERS

ANEANERNERN

NERNEANEAN

FIG. 3. A cluster with x- and y-size 2. z-size 3, and 34 neighbors.

We can guarantee for each of the ¢ x ¢ processors in the ring
that its two neighbors in the ring are at a distance one in the
g * g mesh, apart from one connection which has a distance
of two at most. For reasons of simplicity we take this cost
to be one. On these ¢ * g processors we map a column of the
universe of size m = 1 + n. This means that each processor
gets a sub-universe of m xm * (n/g*) cells. (We define
/= (n/g*).) The universe consists of (n/m)” such columns
and we have (Q/g)? sub-squares to map these columns on.
We will calculate the cost of communicating the neighbors
to the processor with the sub-universe.

First, the m * [cells to the left of the sub-universe have to
be communicated. The distance is g processors, so the cost
is g+ m=I Then we communicate the s =/ cells at the
back, again at cost g. The m * m cells at the bottom can be
communicated with cost 1 (in the ring). Then we still have
to obtain the columns at the front left and back left, and a
few at the bottom and top. The distance of these cells and
the sub-universe seems to be 2 = ¢, but since these cells have
already been sent to closer neighbors in the processor
network, we obtain the information more cheaply. To be
precise, we can obtain 2 =/ remaining cells at cost ¢ and
4 x m+ 4 at cost 1. Writing m = nq/Q, the total communica-
tion cost becomes

2n? 2n (nq)2 dng
—+— =) +—=+4 (1)
g ¢ \¢ ¢
(= e e =f)
Ll_l | [l
user (hl il Ay ol il Oh
L= O L= U U
{th! Rl A4h Aol =plg1
L=] Cerept
Cl_"'T 1 1 11 1 1
(| e
(1_1 —11 i | — 1 imnnl
ter= 7 QU D07
(H e ralgR
[iy LJ/ = L_Jj
FIG. 4, A processor torus: 0 =6, g=3.

PARALLEL MOLECULAR DYNAMICS, [

Things are a little different when g =1. In that case, the
top and bottom layer of the universe reside in the same
processor, so there are

2
2—5—+:m (2)

neighbors, ail at distance ! in the network. Because of
the overlap, the straight g =1 mapping has a “natural”
advantage over ¢ = 2.

{There is also the special case g = Q. In that case, each
processor has n+n*n/Q? cells and communicating the
neighbors costs

(n+2)~ (3)

For cubic universes however, this is not interesting.)

With these formulae, we can calculate which g is the best,
given a certain universe and processor network. Also, it is
possible to investigate how a certain mapping behaves with
respect to scaling of the network or the problem size. Let us
first look at the (unrealistic) example of 7 = (, in which the
size of the network scales with the size of the universe. The
cxpressions 1 and 2 then yield

glg+2y @
Aq—1)°

which gives for each ¢ the universe size # for which g =1 is

equally good. For larger n, the ¢ # 1 mapping is cheaper,
It is, however, more realistic to use a fixed Q, since usually

the size of the network is not scalable. In Table II we see for

different values of Q and g how the two expresstons relate

and what the relative gain of using expression (1) compared

TABLE IT

Comparison of Expressions {1) and {2)

(4] q Range n Ex. (1) Ex.(2) % gain

10 2 — 10 46 40 —15
20 2 8-52 20 76 80 5
40 236 240 2
4 — 20 %6 80 -3

32 2 6-186 32 112 128 12
64 356 384 7
4 5-59 32 116 128 9
64 388 384 —1

100 2 5-2295 100 316 400 21

4 3-834 100 286 400 28

s 3-557 100 289 400 28

6 3-393 100 297 400 26

105

to expression {2) is. The #’s chosen are a multiple of @ to
assure g proper workload balance.

We see that for @ = 101t is cheaper to use straight z-map-
ping; for @ =20 it is a little cheaper to use cluster mapping,
although not for large #. If the algorithm has to scale well
with n, it will be better to use the z-mapping (g = 1). With
the technique described here, it is also possible to investigate
universes of the form a » b = ¢ (e.g., beams), to be mapped
on networks of size P » Q.

5. IMPLEMENTATION

In our laboratory, two Transputer networks are
available. Both are toroidally connected; one has 36 pro-
cessors and the other 40(. Because of this hardware and the
analysis of the previous sections, we chose to implement the
g=1 mapping. Furthermore, each processor has a rec-
tangular mesh of adjacent columns of the universe. The sizes
of the cells in the three dimensions are not related to the
cutoff, which means that it may not be suificient to look at
the 13 neighbors of each cell only, The program actually
computes the “stretch,” i.e., the number of neighbors it
needs to cover distance R.. This approach also makes it
possible to have only a few particles per processor; in some
cases cells of size R} are already too large [12]. Our
tmplementation is written in Transputer Pascal [8].

5.1. Procedures

In Fig.5 we see the main program. The procedure
initialize reads and distributes the parameters of the simula-
tion. It either reads information about the particles from a
file or generates a new configuration on an fcc lattice.

The procedure integrity checks the positions of all par-
ticles in the universe. Since each processor has its own area
(columns) of the universe, particles can cross processor
boundaries, and they will change processors. Upon termina-
tion of integrity, each particle resides in the right processor.

initialize
i while not_finished and GOON do
begin integrity
; if continue then
begin make_verlet
; for ITloop:=1 to NVERL
do move._it
end
else GOON:=false
end
if GOON then
begin integrity
; store_tesults
end

FIG. 5. The main program.

106

PO SR

| AR

C

———

1

1 =

4

FIG. 6. One¢ Processor (“C”) with four neighbors.

The function continue checks the error status of all the
processors. Since it is not possible for the individual pro-
cessors to write error messages whenever an error accurs,
errors have to be logged until they are read by continue,

The procedure make_verlet builds the Verlet neighbor
lists for each particle. This is done by acquiring copies of the
particle information of as many neighbors as is necessary to
have all particles within R, (see 1I). In the simplest case,
there are four neighbors to communicate with, and with the
following communication scheme, there is no danger of
deadlock (see Fig. 6). First, information is sent to the east
(and simultaneously received from the west, flow 1), then to
the south {flow 2). Next, information from the north-west is
needed, but this has just been sent to the east, so it can be
found at the north processor (flow 3). Likewise, information
from the south-west can be found at the south processor
(flow 4). A generalization of this principle can be found
in 1I. Once the required information is on each processor,
the neighbor lists can be made. Note that it ts important to
perform integrity before make_verlet.

Next is a loop performing NVERL times the procedure
move_it. Move_it first sends back the forces calculated in
make_verlet while building the neighbor lists. The forces are
communicated along the same route as the positions, but
backwards. This has to be done, since the force between any
two particles is only calculated once, which means that it
may have to be communicated if the two particles reside in
different processors. After the force updates, the new posi-
tions are calculated using a leap-frog scheme. If necessary,
move_it rescales the temperature. Finally (if the iteration
is not the last of the loop) the new positions are com-
municated and the new forces are computed.

Note that we have two synchronization points during one
iteration: sending the positions and sending the forces. This,
however, does not reduce the velocity (as suggested in
[11]). The reason is that if a processor has to wait for
forces, it will have to wait for positions too. Likewise, if it
does not have to wait for forces, it will not be waiting for
positions either. Synchronization is only harmful if waiting
is a random process. Here the number of particles being
dealt with by a processor is the deciding factor.

Finally, the procedure store_results writes position and

ESSELINK, SMIT, AND HILBERS

velocity of the particies to file, together with data on some
macroscopic properties of the system.

5.2. Data Structure

Each processor owns adjacent columns of the universe.
These columns consist of cells, which have to contain
pointers to the linked list of particles for each cell. Since a
particle can be in more than one Veriet neighbor list, we
implemented this list by a one-dimensional array in which a
processor keeps track of all neighboring particles for every
particle it has. The list is updated every NVERL iterations.

The specific choices are not new and can be found in the
literature {1, 6, 11].

6. RESULTS AND CONCLUSIONS

In this section we present some timing results of simuia-
tions performed on several machines. Results on physicai
properties obtained with our implementation are discussed
in[13].

In Table III we see timing results of simulations done on
a Cray X-MP (single processor), and on 36, 100, and 400
T800 Transputers. Typical values for the variables are
temperature = 1, time step =0.005, NVERL = 10, Lennard-
Jones cutoff =2.5¢. We should note that the FORTRAN
implementation for the Cray is fully vectorized. From these
tables we make the following observations:

« As stated in Section 2, the algorithm is indeed of order
N. Let p denote the density and P the number of processors

TABLE III

Comparison of Execution Times (Seconds per Iteration)

RHO # particles Cray X-MP 36 T30O Ratio
0.5 2016 0.11 048 44
0.7 4000 0.19 0.79 42
09 5324 0.32 1.47 4.6
L0 6912 0.48 1.84 38

RHO s#particles Cray X-MP 100 T800 Ratio
0.5 13500 0.53 0.78 1.47
0.7 19652 1.05 1.46 1.39
0.9 23328 1.33 2.34 1.75
10 27436 175 2.80 1.60
0.7 39304 2.05 285 1.39

RHO #particles Cray X-MP 400 T800 Ratio
0.7 19652 105 0.41 2.56
07 39304 2.05 0.86 238

PARALLEL MOLECULAR DYNAMICS, 1

of the Transputer network; then a formula describing the
number of seconds per iteration reads:

0.064 +0.011 % p » N/P (5)

with mean absolute error 0.066 and standard deviation 0.09.

« For these molecular dynamics simulations a Cray
X-MP single-processor is on average 4.25 as fast as the
network of 36 Transputers and 1.41 as fast as the 100-Trans-
puter network. The 400-Transputer network is over 2.5
times as fast as the Cray. Hence for this kind of calculation
the price-performance ratio strongly favors the parallel
processor networks.

« An additional advantage of the z-mapping is that the
height of the simulation box can be varied without adapting
the implementation. When, for instance, oil/water interfaces
are to be investigated, then two interfaces are established
due to the periodic boundary conditions. By varying the
z-size of the box the effects of the distance between the two
interfaces can be studied, The last row of the middle table in
Table III shows the timing results for a simulation box
which is twice as high as the other entry with density 0.7. As
might be expected there is hardly any influence on the
execution timings.

The timing results show that the z-mapping is indeed
efficient. It can be deduced from Table 11 in Section 4, that,
in the case of a toroidal network of 32 x 32 processors, a dif-
ferent kind of mapping would be even more efficient; the
simplicity of the z-mapping, however, may compensate for
this inefficiency. Whether or not mapping can be improved
further does not alter an important conclusion that can be
drawn, namely, that molecular dynamics simulations can
benefit greatly from parallel computing, both in time and in
cost.

107

ACKNOWLEDGMENT

We thank our colleague John Somers for insightful
discussions about mappings and communication costs.

REFERENCES

I. M. P. Allen and D.). Tildesley, Computer Simulation of Liguids
(Oxford Sci.,, London, 1987).

2. D. J. Auerbach, W. Paul, A. F. Bakker, C. Lutz, W. E. Rudge, and
F. F. Abraham, J. Phys. Chem. 91, 4881 (1987).

3. F. Brugé, V. Martorana, and $. L. Fornili, in CONPARSS, edited by
C. R. Jesshope and K. D. Reinartz (Cambridge Univ. Press,
Cambridge, UK, 1989).

4. K. Esselink and P. A. J. Hilbers, J. Comput. Phys. 105 (1} (1993).

5. D. Fincham. Mol Simul. 1, 1 (1987).

6. R. W. Hockney and J. W. Eastwood, Compurer Sirnulacion Using
Particles (McGraw-Hill, New York, 1981).

7. J. Li, . J. Brass, D. J. Ward, and B. Robson, A study of paralilel
molecular dynamics algorithms for N-body simulations on a
transputer system, Parallel Comput. 14, 211 {1950).

8. J. J. Lukkien, Comput. Sci. Note 8912, University of Groningen,
Dept. Computing Science, P.O. Box 800, 9700 AV., Groningen, The
Netherlands, 1989,

9. V. Martorana, M. Migliore, and 8. L. Formili, QUG 7: Parallel
Programming of Transputer Based Machines, Amsierdam, 1988, edited
by T. Muntean (1.O.S.).

10. H. G. Petersen and J. W. Perram, Mol. Phys. 67 (4), 849 (1989).

11, M. R. 8. Pinches, D. I. Tildesley, and W. Smith, Mol Simul. 6, 51
{1991).

12. H. Sato, Y. Tanaka, H. Iwama, $. Kawakika, M. Saito, K. Morikami,
T. Yao, and 8. Tsutsumi, in Scalable High Performance Computing
Conference SHPCC'92, (IEEE Comput. Soc, IEEE Comput. Soc.
Press, 1992), pp. 113-120.

13. B. Smit, P. A. J. Hilbers, K. Esselink, L. A. M. Rupert, N. M. van Os,
and A. G. Schlijper, Narure 348 (6302), 624 (1990).

14, L. Verlet, Phys. Rev. 159 (1), 98 (1967).

